A Deep Learning Approach for Robust Detection of Bots in Twitter Using Transformers
نویسندگان
چکیده
During the last decades, volume of multimedia content posted in social networks has grown exponentially and such information is immediately propagated consumed by a significant number users. In this scenario, disruption fake news providers bot accounts for spreading propaganda as well sensitive throughout network fostered applied research to automatically measure reliability via Artificial Intelligence (AI). paper, we present multilingual approach addressing identification task Twitter Deep learning (DL) approaches support end-users when checking credibility certain account. To do so, several experiments were conducted using state-of-the-art Multilingual Language Models generate an encoding text-based features user account that are later on concatenated with rest metadata build potential input vector top Dense Network denoted Bot-DenseNet. Consequently, paper assesses language constraint from previous studies where only considered either or together some basic semantic text features. Moreover, Bot-DenseNet produces low-dimensional representation which can be used any application within Information Retrieval (IR) framework.
منابع مشابه
Learning Robust Features using Deep Learning for Automatic Seizure Detection
We present and evaluate the capacity of a deep neural network to learn robust features from EEG to automatically detect seizures. This is a challenging problem because seizure manifestations on EEG are extremely variable both interand intra-patient. By simultaneously capturing spectral, temporal and spatial information our recurrent convolutional neural network learns a general spatially invari...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Melanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3068659